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The results of the study of symmetrical tilt boundaries, reported in the preceding
partI, are generalized to asymmetrical tilt boundaries. A classification of tilt boundaries
in cubic crystals is developed that reveals which boundaries to choose in order to study
equilibrium faceting or intrinsic grain boundary dislocations (g.b.ds) accommodating
a misorientation. Two series of atomistic studies of asymmetrical tilt boundary
structures are presented based on this classification.

The first is a study of long-period (X' < 97) [110] asymmetrical tilt boundaries in
aluminium. The aims of this study are to investigate whether these boundaries are
composed of fundamental structural elements, in the same way as was found in part I
for symmetrical tilt boundaries, and to see iflocalized, distinct stress fields of edge g.b.ds
exist throughout the misorientation range. With use of the results of this study, and the
principle of continuity of boundary structure enunciated in part I, the boundary unit
representation of a X' = 1193 asymmetrical tilt boundary is derived as an example. It is
generally found that the Burgers vectors of intrinsic secondary g.b.ds in tilt boundaries,
based on favoured boundary reference structures, are non-primitive d.s.c. vectors. The
reason for this is given and a simple formula is presented to derive the Burgers vectors of
such dislocations for any favoured tilt boundary reference structure. It is pointed out
that, in general, very low angle (6 < 1° say) tilt boundaries cannot be described in
terms of units from high angle tilt boundaries, and the transition from the low angle to
high angle régimes is discussed.

The second atomistic study is an investigation of equilibrium faceting of long-period
2 = 3[110] tilt boundaries with use of an empirical potential for copper. The limi-
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38 A.P.SUTTON AND V. VITEK

tations of computer simulation methods using periodic border conditions to study
faceting are stated. It is shown, however, that the constraints imposed by the use of
periodic border conditions may be used in a positive sense to carry out the Wulff con-
struction, and thereby deduce equilibrium faceting behaviour.

1. INTRODUCTION

In this paper the results of the study of symmetrical tilt boundaries, reported in the preceding
part I, are generalized to asymmetrical tilt boundaries. By an asymmetrical tilt boundary we
mean a tilt boundary in which the crystal planes parallel to the interface in both grains are not
of the same crystallographic form: for example (225),/(441),is asymmetrical while (116),/(116),
is symmetrical. Asymmetrical tilt boundaries have one degree of freedom more than symmetrical
tilt boundaries, i.e. the boundary inclination may be varied at constant misorientation between
the adjoining grains. Thus for a given misorientation an infinite number of boundaries exist in
principle but in equilibrium most of them may facet into a few low energy boundaries.

As will be discussed in §3.3 macroscopic faceting cannot be simulated by atomistic calcu-
lations when periodic border} conditions are used. When the facets are sufficiently small they
may be described as steps on the dominant boundary plane. There are two types of step that may
exist (Hirth & Balluffi 1973). The firstis a perfect step (Ashby 1972), which is not associated with
a dislocation, and the step vector (King & Smith 1980) is in this case a (coincidence site lattice)
c.s.l. vector. An interface containing such steps is free of long-range stresses (Hirth & Balluffi
1973, Christian & Knowles 1981). This is the type of boundary that is produced during equi-
librium faceting of an embedded grain at high temperatures. The second type of step is associated
with a dislocation, and the step vector is not a c.s.l. vector. An interface containing such steps
does have a long-range stress field. For example, the curved interface of a lenticular deformation
twin contains twinning dislocations, which are associated with steps, on the coherent twin
boundary plane. The long-range stress field of such an interface may be relaxed by emission or
absorption of lattice dislocations, which annihilate dislocations associated with the steps (see
for example Sleeswyk 1962).

In a computer simulation of the atomic structure of a tilt boundary it is clear that if there is
any tendency for the boundary to facet it can do so only by the creation of perfect steps. The
reason is that the border conditions imposed require zero stresses far from the boundary. Thus
in the atomistic study of faceting presented below we shall only be able to discuss equilibrium
faceting, which involves the creation of perfect steps.

Two series of atomistic calculations of asymmetrical tilt boundary structures are presented
and analysed in §3. The methods of calculation and interpretation of the results, and the inter-
atomic potentials were described in part I. However, it is first necessary to explain how the
boundaries used in these studies were selected since this is not obvious a priori. A geometrical
classification of tilt boundaries in cubic crystals is developed in §2 that indicates which tilt
boundaries to choose to study equilibrium faceting or secondary, intrinsic edge (grain boundary
dislocation) g.b.d. formation. The results of the atomistic calculations are then readily under-
stood and generalized within the framework of this geometrical classification.

1 By border conditions we mean the conditions imposed on the faces of the computational cell perpendicular

to the boundary plane. We have not used ‘boundary conditions’ to avoid confusion with conditions imposed on
the grain boundary such as the necessity for it to be periodic.
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GRAIN BOUNDARY STRUCTURE IN METALS. II 39

2. GEOMETRICAL GLASSIFICATION OF TILT BOUNDARIES IN CUBIC CRYSTALS

In the following classification it is assumed that if the indices of the local boundary plane are
different from those of the macroscopic boundary plane then such variations are effected by the
introduction of only whole units of the corresponding boundaries. Thus imperfect steps, such as
those associated with twinning dislocations, are excluded. It is also assumed that steps are not
associated with intrinsic secondary g.b.ds in tilt boundaries that accommodate a misorientation
from some favoured boundary, and that their Burgers vectors are normal to the favoured
boundary plane. The latter assumption is supported by the atomistic calculations reported in
§3.2 and arguments presented recently by King & Smith (1980) and King (1982) indicating that
steps associated with intrinsic g.b.ds accommodating a misorientation are, in general, energeti-
cally unfavourable. Thus local changes in misorientation and inclination are assumed to occur
independently through step-less edge g.b.ds with Burgers vector normal to the reference
boundary plane and dislocation free steps, respectively.

To discuss secondary, intrinsic g.b.d. formation we consider all possible tilt boundaries in
which the upper and lower grains are obtained by rotations of plus and minus $6 respectively,
from some plane in the ideal crystal containing the tilt axis, where € is the angle of misorientation
across the resulting boundary. For definiteness we shall consider [110] tilt boundaries, but the
procedure is readily generalized to other tilt axes. Let the atomic plane in the ideal crystal, from
which the boundaries are derived, be called the mean boundary plane and let its indices be
(hshgks). Consider the lattice with basis vectors 3[110], f;[Ashsks] and fy[ksk2hs] where f; and f,
are the appropriate cell factors for the crystal Bravais lattice (Christian 1975). This lattice,
whichisillustrated in figure 1, is a sub-lattice of the median lattice, and the volume of its primitive
cell is (2k2+ k2) f1 /2 In figure 1 the positive tilt axis is normal to the page pointing towards the
reader. Let p; and p, be the period vectors in the upper and lower grains, respectively, of a
periodic boundary that we shall obtain from the lattice shown in figure 1. Similarly, let n, and n,
be the unit normals of the boundary plane with respect to the upper and lower grains where, by

convention, n, and n, both point from the lower to the upper grain. To ensure |p,| = |p,|, and
therefore that the boundary is periodic, we write
P1 = xfolksks %s] +yfilhshsks], P = xfz[ksks ﬂs] —yfilhshsks), <1)

where x and y are positive integers. In figure 1 (x,y) = (3,1). The coordinate frame shown in
figure 1 is affixed to both upper (y > 0) and lower (y < 0) grains and the infinite wedge of ideal
crystal between the p; and p, directions is removed. The upper grain is then rotated by 46 in an
anticlockwise sense about the positive tilt axis and the lower grain by 10 in the opposite sense. The
two grains now meet in the plane y = 0 of figure 1 and they are welded together to form a grain
boundary. Although p,, p, and n,, n, are parallel it must be remembered that the upper and
lower grain coordinate frames are now misoriented by 6, and that the components of p; and p,
are still given by equations (1). By allowing x and y to assume any positive integer values we may
thus construct all periodic boundaries obtainable by rotations of + 10 from (hghgks) of the ideal
crystal. Irrational boundaries may be represented to any required accuracy by allowing x and y
to assume infinite values. Adding the components of p, and p, we obtain a vector that is always
parallel to [kyky2k] of figure 1. Since [ksk2%,] is also parallel to the period vectors p; and p,
after the boundary is formed we call $(p; + p,) the mean period vector. Similarly, by adding the
components of n; and n, we always obtain a vector that is parallel to [/ k] of figure 1, which is,
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40 A.P.SUTTON AND V. VITEK

of course, the normal to the mean boundary plane (% 4iks). Hence all boundaries created in this
manner share the same mean boundary plane and their mean period vectors are parallel. For
any tilt axis the mean boundary plane must lie in the zone of the tilt axis so it may always be
characterized by a single parameter, which we call £. We choose & = £,/k; to characterize the
mean boundary plane (%s/4k), and all boundaries sharing this mean boundary plane are said
to belong to the same £-system. As we shall see in § 3.2 the physical significance of a £-system is that
secondary intrinsic g.b.d. formation in a long-period tilt boundary corresponds to the intro-
duction of units of favoured boundaries from within the same &-system. Thus, once all the

(=]
DOl DOP—
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A
\15

fi [hshsksj[
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Ficure 1. Hlustration of the construction of a [110] tilt boundary with upper and lower grain period vectors, p,
and p,, that are lattice vectors of the two-dimensional lattice with basis vectors f,[k,k,2h,] and f[h.h,k,]-
Vectors n, and n, will be the boundary plane normals, in the upper and lower grains, after the boundary
is formed.

favoured boundaries in a £-system are determined the structures of all non-favoured boundaries
in the &-system are readily deduced, if continuity of boundary structure exists throughout the
misorientation ranges between the adjacent favoured boundaries, and all boundaries considered
are stable with respect to faceting. The broader physical significance of a §-system is that all five
macroscopic parameters of tilt boundaries belonging to a particular £-system are the same,
except the misorientation, 6. Therefore, in a study of the variation of some property of tilt
boundaries (such as energy, sliding rate, diffusivity etc.) with 6, one should compare only
boundaries belonging to the same &-system.

From figure 1 we see that tan 30 = yf /xf54/2. It follows that the reciprocal density of co-
incidence sites, 2, of the coincidence system to which the tilt boundary belongs is given by
2 = d,(2%% 2+ y*f%), where d, is an operator such that dy(z) signifies that z is repeatedly multi-
plied or divided by two until z is an odd integer (2x2f%+y?/3 may be fractional if f; and f, are
fractional). Alternatively, by interchanging the axes of figure 1, and reversing the direction of
the positive [110] axis, we could have created exactly the same set of boundaries but the mean
period vector would have been f[Ashsks] and the mean boundary plane would have been
(ksks2hs). In that case tan 30 = yfy4/2/xf1 and 2 = dy(x% 2+ 24%3). In simple cubic crystals
(f1 = 1, f; = 1) these expressions reduce to those given by Ranganathan (1966). All boundaries
thus manufactured from the lattice depicted in figure 1 have the same mean boundary plane
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GRAIN BOUNDARY STRUCTURE IN METALS. II 41

but difierent values of 2. The exceptions are 6 = 0 and 6 = 180° (X = 1), which is a trivial
consequence of twofold rotational symmetry along [110].

We name the orthogonal crystal vectors, fi[hshoks] and fy[ksk.2k], used to construct all
boundaries belonging to £ = kg/A, basis vectors of the £-system for the corresponding Bravais
crystal lattice. It is essential to show first that a grain boundary, in a particular Bravais crystal
lattice, can be assigned uniquely to a £-system. Let a,, a, be basis vectors for the £, system and
b,, b, be basis vectors for the £, system. Suppose that a boundary with upper and lower grain
period vectors, p; and p,, can be assigned to both £ systems. Then

Dy = xa,+ya, = rb +qb,, Py = xa,—ya, = rb; —qb,,

where #, y, 7, ¢ are positive integers. By adding and subtracting these equations we deduce
xa; = rb, and ya, = ¢b,. Therefore a, and b, are parallel, as are a, and b,, and hence £, = §,.
However, although a boundary may be assigned uniquely to a £-system there are equivalent
£-systems. Equivalent £-systems are related by crystal symmetry operations on the coordinate
system of the ideal crystal before the boundary is formed. In addition, we have already seen that
the same setof boundaries is generated if the basis vectors f;[ A, 4 k¢ ] and f;[k¢ ks 2h,] are exchanged.
Therefore, £ = k/hyis equivalent to § = — 2k, /k,. Similarly, if ;[ 4, A k] and fy[ksks 2hs] had been
used as basis vectors, a one-to-one equivalence would be found between the structures of
boundaries in the two &-systems £ /A, and — £ /ks and hence the following £-systems are equiv-
alent in [110] tilt boundaries: k/hy, —ky/hg, 2hs/ky, — 2hs/ks.

Symmetrical tilt boundaries either have a mean boundary plane that is a crystal mirror plane
or their mean period vector is an even-fold rotation axis of the ideal crystal. In cubic crystals
{110} and {001} are mirror planes and {110) and {001} are even-fold rotation axis. At least one
of the conditions for symmetrical tilt boundaries can be satisfied if the tilt axis lies in a {100) or
{110} zone. This observation has also been made by Fortes (1972). The lowest-index tilt axis
that does not allow symmetrical tilt boundaries is thus (128). The [110] symmetrical tilt bound-
aries studied in part I, §4 all have mean boundary plane normals of the upper and lower grains
listed in tables 1 and 2 of part I. Similarly, the symmetrical [001] tilt boundaries studied in
part I, §5 have mean boundary plane (110) and mean period vector [110]. Finally the [111]
symmetrical tilt boundaries studied in part I, §6 have mean boundary plane (110) and mean
period vector [112].

To illustrate the use of equation (1) to generate asymmetrical [110] tilt boundaries within the
same £-system consider the £ = 1 system in f.c.c. crystals. In this case kg/k, = 1 so we choose
ks =1, hy = 1 corresponding to a mean boundary plane (111) and mean period vector 3[112]
(/i =1, fo = }). This is the lowest-index mean boundary plane that will generate asymmetrical
[110] tilt boundaries. Equations (1) become

Py = (112 +y[111], P, = $[112] —y[111]. (2)

A boundary in which p; and p, are given by equations (2) may be represented by the ordered
pair (x,y) and it belongs to the coincidence systems X = a2+ 2y2. Table 1 lists some of the
boundaries in £ = 1 system. Note that in some cases the period vectors and boundary planes are
expressed as multiples of crystal vectors and crystal planes, e.g. p, = £[330], and (003), in the
case of the boundary (1, 1). This is done to ensure that |p;| = |p,|, P, + P, is parallel to [112]
and the sum of the boundary plane normals is parallel to [111]. Of course, when the boundary
plane is expressed as (003), it is understood that the atomic plane parallel to the boundary in the

6 Vol. 309. A
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42 A.P.SUTTON AND V. VITEK

upper grain is (002),. The boundaries (1,1) to (1,2), listed in table 1, are the subject of an
atomistic study reported in §3.

We now turn to considerations of faceting of tilt boundaries. Consider an embedded prism
grain with the rotation axis parallel to the prism axis. The prism faces that are parallel to the
prism axis will then be tilt boundaries. The possible tilt boundary planes of such a faceted prism
grain may again be generated on the basis of equations (1). In the case of faceting 2’ remains
constant but £ changes from one boundary facet to another. Therefore, to describe faceting we
rewrite equations (1) as follows:

D1 = hogalyy2x] + ko golxxyl, Do = hoga[972x] + kool %x7], (3)
TABLE 1
boundary D1 D plane 0/deg z
(1,0) 3[112], 3[112], (111),/(111), 0 1
(3,1) 1[55], 1[118), (225),/(441), 50.48 11
(5, 2) 1[998], i1, 1, 14], (339),/(771), 58.99 33
2, 1) [221], [003], (114),/(330), 70.53 3
(3, 2) 1[772], i1, 1, 10], (117),/(55T), 86.63 17
(1, 1) 1[330], 1, 1,4, (003),/(221), 109.47 3
(5, 6) 317, 17, 21, 7,7, 22], (1,7, 17), (11, 11,7), 118.98 97
(3, 4) 11, 11, 2], 1[5, 5, 14], (1,1, 11),/(775), 124.12 41
(2, 3) [441], [225], (118),/(554%), 129.52 11
(1, 2) 3[562], 3[336], (115),/(333), 141.06 9
(1, 3) 1[774], 1[558], (227),/ (445), 153.47 19
(0, 1) [111], [111], (112),/(112), 180 1

where g,[yy2x] and g,[xxy] are primitive vectors of the crystal Bravais lattice. The numbers x
and y are now restricted to being coprime integers and we may construct the period vectors of
all [170] tilt boundaries belonging to the coincidence system X = 2x% 4y by allowing 4, and &
to take on any positive integer values. We use now the ordered pair [/, k] to denote a boundary,
the period vectors of which are given by equations (3). By adding equations (3) it is found that
the mean period vector of [A, k] is parallel to [ksgs, ksgs, — 2h581], and the mean boundary plane
is parallel to (ksgy, gy, ksgs). Thus the boundary [Ag, k] belongs to the § = kyga/hsgy system.
The upper grain period vectors of all [110] tilt boundaries belonging to the ' = 2x®+y* co-
incidence system may thus be represented as lattice vectors of the two-dimensional lattice with
basis vectors g;[yy2x] and g,[xxy]. Of course, the lower grain period vectors may be represented
similarly. The basis vectors of this lattice are the p, vectors of the two symmetrical tilt boundaries
that appear in this coincidence system. That is because the basis vectors correspond to the
boundaries [1, 0] and [0, 1] with mean boundary planes (110) and (001). It is therefore possible,
though not necessarily energetically favourable, for all asymmetrical (110) tilt boundaries in a
particular coincidence system to facet into the corresponding two symmetrical tilt boundaries.

To illustrate the use of equations (3) to construct all [110] tilt boundaries in a particular
coincidence system in f.c.c. crystals we shall consider X' = 11, for whichx = 1,y =3 orx = 3,
y = 2. These two choices for x and y lead to 6 = 129.52° and 6 = 50.48° respectively, which are
equivalent in the sense that the same set of boundary structures will be generated. Therefore
we choose arbitrarily ¥ = 1, y = 3 and then equations (3) become

Py = $4[332] +A[113], Py = $A[332] +K,[113], (4)
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GRAIN BOUNDARY STRUCTURE IN METALS. 11 43

since g; = %, g, = 1. The mean boundary plane of the boundary [4, ] is parallel to (hsh2k;)
and it therefore belongs to the & = 2k, /A system. For b.c.c. crystals equations (4) are replaced by

Py = h[332] +3k[113], P, = A[332] + 4k,[113],
since g, = 1, g, = 4. In this case the boundary [A, k] belongs to the § = k,/2h system.

3. ATOMISTIC CALCULATIONS OF ASYMMETRICAL TILT BOUNDARIES
3.1. Introduction

Two series of calculations have been made that are based on the classification of tilt boundaries,
presented in §2. The first is a study of some of the boundaries belonging to the £ = 1 system in
aluminium. This system corresponds to the lowest-index mean boundary plane, (111), for which
asymmetrical tilt boundaries exist. The aim of these calculations was to investigate whether the
stress fields of localized, distinct g.b.ds exist in those asymmetrical tilt boundaries. The second
series is a study of faceting in the 2 = 3 coincidence system. This is the lowest value of X (apart
from X' = 1) that exists and it was hoped that each boundary facet would therefore not decompose
into units of boundaries in the same §-system. These calculations were made with use of the
potential for copper. The reason why the potential for aluminium was not used in this study is
explained below.

3.2. The & = 1 system in aluminium

Table 2lists the boundaries selected for this study. They arefromthe & = 109.47°to 6 = 141.06°
range of the boundaries listed in table 1. As shown below the 2 = 3 and 2" = 9 boundaries are
favoured. It is proved in the Appendix that in any periodic grain boundary the odd/even form
of the indices of the boundary plane with respect to the upper and lower grains is the same.
Furthermore, in every boundary period, the number of crystal periods parallel to the boundary,
in either grain, is always an odd integer. It follows that if the boundary plane, with respect to one
grain of a [110] tilt boundary, has a centering site, then so does the boundary plane with respect
to the other grain and therefore the boundary is centred. Thus centred [110] asymmetrical tilt
boundaries occur when the indices of the boundary plane with respect to the upper and lower
grains are all odd, and the centering site is again at the centre of the repeat cell. The vector
characterizing a unit of a centred, asymmetrical [110] tilt boundary is therefore half the period
vector in both grains. For example, the 2 = 9 (115),/(333), boundary is centred and its unit is
characterized by the vector 3[552],/4[336],. We call a unit of the 2’ = 3 boundary A and one of
the X' = 9 boundary B; their structures are therefore represented by |A| and |B.B| as shown in
column 5 of table 2.

TABLE 2
boundary plane 0/deg z period vectors structure
(003),/(221), 109.47 3 1[330],/3[114], IA|
(1,1, 17),/(11, 11, 7), 118.98 97 1017, 17, 21,/3[7, 7, 221, |AAB.AAB]
@, T, 11),/(775), 124.12 41 1[11, 11, 2],/1[5, 5, T4], |AB.AB|
(1,1, 8),/(559), 129.52 11 [441],/[225], |AAB|
(115),/(333), 141.06 9 1[552],/3[336], |B.B|

Figure 2 shows the relaxed structure of the X' = 3 boundary, which has been calculated
previously by Pond & Vitek (1977). A suitable boundary unit, occupying one period of the
boundary, is outlined at the boundary. The coordinate system is shown in figure 2. (111) planes

6-2
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44 A.P.SUTTON AND V. VITEK

in each grain are indicated in figure 2 and it is seen that they are both inclined by 54.74° to the
boundary. Thisshows that the boundary mayindeed be regarded as a 109.47° rotation symmetri-
cally imposed on the (111) plane of the ideal crystal. From Frank’s formula we see that such a
misorientation can be achieved by formally associating a lattice dislocation, of Burgers vector
2[111], with every unit of the boundary. Three (111) plane terminations can be seen at every
unit in each grain, which is consistent with this formal description.

Pa A A A
+ + + +
A A A A
+ + + +
A A A A
+ +
+
4 1
+  3[110],
+ +
A
+
A
+ +
[001]2 +
A A

+

A

Ficure 2. Relaxed structure of 2 = 8 (003),/(221),, 109.47°/[110] boundary in aluminium. A units are indicated
in this and following figures by full lines. (111) planes in the upper and lower grains are seen to be inclined
by 54.74° to the boundary.

Figure 3 shows the relaxed structure of the 2 = 9 boundary. A suitable B unit, occupying half
a period of this centred boundary is shown by broken lines. Again each unit of this boundary
may be associated formally with a lattice dislocation of Burgers vector 2[111].

Figures 4a, b show the relaxed structure and hydrostatic stress field map of the X' = 97
boundary. Although the units are distorted, two A units, shown by full lines, and one B unit,
shown by broken lines, may be readily identified in every half period of this centred boundary.
The corresponding decomposition of each half period vector of this boundary is as follows:

117,17, 2], = §[330], + [552],,

%[7’ 7, §§]2 = %[Tﬁ]z + %[%]20
The stress field of an edge g.b.d. is centred at each B unit, again shown by broken lines in
figure 45. One (002), plane and three (442), planes are shown in figure 44 entering the boundary
and terminating at a B unit. These terminating planes correspond to a g.b.d. of total Burgers
vector [001], (or [221],). The most appropriate g.b.d. description of this boundary is that using
the X = 3(003),/(221), reference structure, because in that case B units are located at the
cores of [001], (non-primitive) X' = 3 d.s.c. dislocations. There is a one-to-one correspondence
between this secondary g.b.d. description and the stress field map of the boundary, figure 45.
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Each grain contributes an equal amount to the ‘extra material’ associated with each [001],
g.b.d. and this is consistent with the absence of steps in the boundary plane. The spacing of these
dislocations is a half period of the X' = 97 boundary and with use of Frank’s formula it can be
verified that they accommodate the 9.51° deviation from the exact 2 = 3 misorientation.
Figures 5a, b show the relaxed structure and hydrostatic stress field map of the X' = 11
boundary. Every period of this non-centred boundary is composed of two B units, shown by
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Ficure 3. Relaxed structure of X = 9 (115),/(333),, 141.06°/[110] boundary in aluminium.
B units are indicated in this and following figures by broken lines.
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FiGurs 4. (a) Relaxed structure of X = 97 (1, 1, 17),/(11, 11, 7),, 118.98°/[110] boundary in aluminium. One
(002), plane and three (442), planes are shown entering the boundary and terminating at a B unit. (b)) Cor-
responding hydrostatic stress field map.
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broken lines, and one A unit, shown by full lines. Again, the units are distorted but nevertheless
identifiable. The decomposition of the upper and lower period vectors is thus

[441], = 2[552], + }[330],,

[225], = §[336], + 3[114],.
In figure 56 it is seen that A units are located at the centres of edge g.b.d. stress fields. The most
appropriate g.b.d. description is therefore that using the X' = 9 (115),/(833), reference structure.
In that case the edge g.b.d. stress fields at A units are caused by —2[115], (or —£[111],) non-
primitive X = 9 d.s.c. dislocations. One (111), plane and three (115), planes are shown in
figure 54 entering the boundary and terminating at an A unit. Both grains contribute an equal
amount to the ‘extra material’ associated with each —2[115], dislocation, which is consistent
with the absence of steps in the boundary plane. The spacing of the dislocations is one period of
the X' = 11 boundary and using Frank’s formula it can be verified that they accommodate the
—11.54° deviation from the 2' = 9 orientation.

Ficure 5. (a) Relaxed structure of ¥ = 11 (118),/(554),, 129.52°/[110] boundary in aluminium. One (111),
and three (115), plancs are shown entering the boundary and terminating at an A unit. () Corresponding
hydrostatic stress field map.

The X = 41 boundary is the 1: 1 boundary of this series. Between this and the 2' = 3 boundary
orientations there are more A than B units and the most appropriate g.b.d. description uses the
X = 3(003),/(221), reference structure. Similarly the most appropriate structure between the
Y =41 and X = 9 boundary orientations is the X = 9 (115),/(833), boundary. These g.b.d.
descriptions are equally appropriate at the X = 41 boundary. Figures 64, b show the relaxed
structure and hydrostatic stress field map of the 2 = 41 boundary. Each half period of this
centred boundary is composed of one A unit (full lines) and one B unit (dashed lines). Figure 64
indicates that every half period of this boundary contains one edge dislocation and that these
dislocations are localized and physically distinct. These dislocations may either be regarded as
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[001],/(3[221],) preserving the X' = 3 favoured boundary, or as — 2[115], (— 2[111],) preserving
the X' = 9 boundary.

In aluminium X = 9 (115),/(333), and X' = 3 (003),/(221), are favoured boundaries because
their units are the fundamental structural elements of the intervening £ = 1 boundary structures.
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2 Ficure 6. (a) Relaxed structure of 2 = 41 (1, 1, 11),/(775),, 124.12°/[110] boundary in aluminium.

> > (b) Corresponding hydrostatic stress field map.

oF .

e, E On the basis of the above calculations it seems very likely that all £ = 1 boundaries in alu-

25} minium, in the misorientation range 109.47 < 6 < 141.06°, are composed of A and B units from
> g P

O these favoured boundaries. Continuity of boundary structure (sce partI, §4.3) therefore probably

= y y p

exists throughout this misorientation range. The unit representation of any boundary in this
range may be deduced in precisely the same way as shown in part I, §4.3. For example, consider
2 =1193(7,7,59),/(37,37,29),, 128.52°/[110] in aluminium. The upper and lower grain
period vectors are p, = 1[59, 59, 14], and p, = 1[29, 29, 74], respectively. To find the numbers,
¥ and y, of A and B units in each half period of this centred boundary we express the half period
vectors as linear combinations of vectors characterizing A and B units:

1[59,59, 14], = §x[330], +3y[552],, 1[29,29,74], = $x[114],+}y[336],.

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

/

A A

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

48 A.P.SUTTON AND V. VITEK

Solving either of these equations we find ¥ = 4 and y = 7. Using continuity of boundary structure,
as shown in part I, §4.3, we find that the unit representation of the boundary is

|ABBABBABBAB. ABBABBABBAB|.

Since A units are in the minority in this case it is appropriate to associate each A unit with the
core of —2[115], (or —£[111],) secondary dislocation, preserving the £ = 9 favoured boundary
structure.

8.8 Faceting of [110] tilt boundaries in the X = 3 coincidence system

Before the results of the calculations are presented we would like to point out the limitations of
simulating equilibrium faceting in atomistic studies. First, if a boundary has a tendency to facet,
the lengths of the facets are artificially constrained owing to the use of periodic border conditions
parallel to the macroscopic boundary plane. This means that any facets introduced during the
relaxation will be repeated periodically with the period of the original boundary plane. In this
case the interaction energies between the boundary facets may represent a significant contri-
bution to the total energy, and thereby influence which facets are formed. Furthermore, in such
calculations a symmetrical [110] tilt boundary is constrained to remain symmetrical even if there
is a tendency for it to facet into asymmetrical tilt boundaries. This is because the period vectors
of symmetrical [110] tilt boundaries are always smaller than the period vectors of any asym-
metrical [110] tilt boundaries in the same coincidence system. Therefore it is highly unlikely that
equilibrium faceting, as given by the Wulff construction, will be obtained when periodic border
conditions are used. On the other hand it is possible to take advantage of the constraints imposed
by the periodic border conditions, and to carry out the Wulff construction for the energies of
certain boundaries possessing the same value of 2, and thereby deduce the equilibrium faceting
behaviour. This is the approach adopted in this work. The calculations were performed with use
of the potential for copper and although several 2 = 3 boundaries have been studied previously
with the potential for aluminium (Pond & Vitek 1977) these calculations have not been extended
further. The reason is that boundary energies may be evaluated precisely when the potential for
copper is used, because it is short range. This is in contrast to the potential for aluminium which
is long range and oscillatory, so that precise evaluation of corresponding boundary energies
requires consideration of a very large number of neighbours (see for example Vitek 1975).

TaBLE 3
mean
boundary boundary plane energy/(mJ/m?)
(111),/(1T1), (001) 22
(003),/(221), (111) 2878
(115),/(333), (221) 1111
(112),/(112), (110) 838

The relaxed structure and energy of the ten smallest-period X' = 3[110] tilt boundaries
throughout the 90° inclination range, have been calculated. The four smallest-period boundaries
did not undergo faceting during the relaxation, either because it was not energetically favourable
for them to facet, or because the periodic border constraints inhibited their faceting. The relaxed
structures of the remaining six boundaries appeared to contain facets from the four smallest-
period boundaries. It is therefore very likely that the four smallest-period boundaries are the
only four possible singular interfaces appearing in the equilibrium Wulff shape.
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The relaxed structures and energies of the symmetrical tilt boundaries are virtually identical
to those presented by Crocker & Faridi (1980), who used the same interatomic potential. The
high energy of the (112), boundary was commented on in detail in that paper. Figures 7 and 8
show the relaxed structures of the (003),/(221), and (115),/(333), boundaries.

A AN A AN AN Ay Ay A Ay

Ficure 7. Relaxed structure of X = 3 (003),/(221),, 70.563°/[110] boundary
calculated with the potential for copper.

+ A +
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Ficure 8. Relaxed structure of £ = 3 (115),/(333),, 70.53°/[110] boundary
calculated with the potential for copper.
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50 A.P.SUTTON AND V. VITEK

If the mean boundary plane is (hhk) the corresponding boundary is represented on a polar
Wulff plot by a radius vector, whose length is proportional to the energy of the boundary, and
which makes an angle of arctan (k/k) to the x-axis. In this way the above four boundaries are
represented in the first quadrant of the polar Wulff plot shown in figure 9. The axes of the plot
shown in figure 9 are mirror planes of the Wulff plot because they correspond to (110) and (001)
mean boundary planes. It is therefore sufficient to consider only one quadrant of the plot. The
equilibrium Wulff shape is shown by broken lines. This is the equilibrium Wulff shape of an
infinitely long prism grain in the 2 = 3 orientation with the surrounding grain. The axis of the

2878

1111

e e e . e e e e - e o — —— — ——— —— —— —

F1cure 9. Wulff construction for £ = 3 [110] tilt boundaries with use of boundary energies obtained with the
potential for copper. The axes are mirror planes of the plot. The equilibrium Wulff shape is shown by the
broken lines.

prism is parallel to [110]; and the faces of the prism are (111),/(111), and (112),/(112), sym-
metrical tilt boundaries, and their variants. This indicates that all asymmetrical X' = 3 [110]
tilt boundaries, calculated with the potential for copper, tend to facet into the two symmetrical
tilt boundaries. The ratio of the lengths of the coherent facet to the incoherent facet in an
equilibrated prism is about 38.

4. DiscussioN

In §2 it was shown that all tilt boundaries, with the same tilt axis, may be classified by two
parameters: 2 and . The parameter £ is determined by the mean boundary plane, i.e. the plane
of the ideal crystal that is obtained when the misorientation of boundaries in that £-system tends
to zero. Since all boundaries in a £-system share the same mean boundary plane, £ varies with the
inclination of the two grains and not their misorientation. On the other hand 2 varies only with
the misorientation of the two grains and not their inclination. Therefore 2 and £ are independent
parameters that, for a given tilt axis, may be used to specify a tilt boundary uniquely. The
significance of this classification is that it indicates which tilt boundaries to choose to study
equilibrium faceting or intrinsic secondary g.b.ds. Equilibrium faceting introduces boundary
units from the same coincidence system, i.e. 2 = constant but £ varies. Intrinsic secondary g.b.d.
stress fields accompany the introduction of boundary units belonging to the same £-system,
i.e. £ = constant but X varies. Systematic studies of these two modes of decomposition may then
be made by either computer simulation or experiments. The underlying physical assumptions
are that the mean boundary plane changes only by the formation of perfect steps and that intrinsic
g.b.ds, accommodating a misorientation from some reference structure, are never associated
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with steps. For reasons of energetics (King & Smith 1980, King 1982) the latter assumption is
expected to be valid for almost all cases.

A general tilt boundary may undergo both faceting and intrinsic secondary g.b.d. formation
to minimize the interfacial energy. This would introduce boundary units belonging to lower-
index mean boundary planes and characteristic of boundaries with possibly lower values of Z.

Although this classification has only been illustrated for the [110] tilt axis it may be readily
generalized to any tilt axis in any cubic Bravais lattice. In general if the tilt axis is t = [UVIW]
we choose two orthogonal primitive lattice vectors, #, and u,, in the zone of . The period vectors,
P, and p,, in the upper and lower grains of [UVW] tilt boundaries with mean period vector
parallel to u, are written as follows

D1 = xuy+yuy, Py = XUy — YU, (5)

where x and y are integers. The mean boundary plane normal is then parallel to u,. We may
write U, as f [ — (Vk + WI), Uk, Ul], where fis the appropriate cell factor and & and [ are integers.
All [UVW] tilt boundaries, with mean boundary plane (— (Vk+ WI), Uk, Ul), may, by con-
vention, be assigned to the £-system & = [/k. From equation (5) we obtain

tan §0 = yluy| /s, .

Sinceu; = u, A t,and all three vectors are orthogonal, we may write |u,| = |u,| |¢| and therefore
tan 30 = y/(x(U2+ V2+ W?)3). This is the usual expression for tan 16 obtained originally by
Ranganathan (1966) for c.s.ls generated by rotations about {UVIW.

Asymmetrical tilt boundaries of the £ = 1 system in aluminium were shown in § 3.2 to conform
to precisely the same scheme of favoured and non-favoured boundaries as developed in part I
for symmetrical tilt boundaries. Thus 2 = 3 (003),/(221),, 109.47°/[110] and X = 9 (115),/
(333),, 141.06°/[110] are favoured boundaries and the intervening £ = 1 non-favoured bound-
aries are composed of units from these favoured boundaries. Therefore the boundary structure
changes continuously in this misorientation range enabling us to predict the unit representation
of any £ = 1 boundary in this range. Intrinsic secondary g.b.d. stress fields are, again, located at
the intermittences of the sequence of majority units in the boundary. Hence the most appropriate
reference structure for the secondary g.b.d. description is again the favoured boundary composed
of the majority units. The hydrostatic stress field maps reveal that the secondary intrinsic g.b.ds
are localized and distinct. It may be concluded that the answers provided in part I, §7 to the
questions raised in part I, § 1 are equally applicable to asymmetrical tilt boundaries.

In partIand §3.2 of this paper the Burgers vector of intrinsic secondary g.b.ds, accommodating
a misorientation from some favoured boundary reference structure, was always the smallest
possible d.s.c. vector that did not require steps in the favoured boundary plane. For example,
in part I, §4.2 J%[115], non-primitive X' = 27 d.s.c. dislocations preserve the & = 27 (115),
favoured boundary. One {115} plane originating from each grain terminates at every ;%[115],
dislocation core and hence each grain  contributes’ 5%[115], to the total Burgers vector. We may
generalize this result. Consider a favoured tilt boundary (k,%,1,),/(ksk5l,), in a simple cubic
Bravais lattice. The plane indices are expressed in a form such that A3 +4%+ /3 = A3 + 43+ /% and
there is no factor common to all six indices. In addition, if there is no common factor in either
hy, kyy 1y or hy, ko, Uy then both grains contribute x(A2 + 4% +12)~% to the total intrinsic secondary
dislocation Burgers vector magnitude of 2x(A} +42+(3)~%. Here x is the smallest integer such
that the total Burgers vector, 2x(h}+43+12)~1[hk,0}];, is a d.s.c. vector of the coincidence

7-2
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system to which the favoured boundary belongs. Now suppose that A, £,, [, do share a common
factor n. Then BRI = n2(RR 4 4 L)

e.g. (221),/(003),, for which n = 38, h; = 0, k3 = 0, [; = 1. In that case both grains contribute
x(hs2+ k52 +1;%) % in magnitude to the total Burgers vector 2x(hy2 + kg2 +1;2) "1 [hyk315]5, where
x has the same meaning as before. This means that each dislocation is associated with nx(h, k,1,),
plane terminations from the upper grain and x(Ay43/3) plane terminations from the lower grain.
The same procedure may be applied to f.c.c. and b.c.c. Bravais lattices except that the inter-
planar spacing must be correctly adjusted to correspond to planes containing atoms. For
example, suppose 2 = 3 (114),/(8830),is favoured in some f.c.c. metal. The interplanar spacing
in the lower grain is three times as large as in the upper grain: » = 3. But the planes parallel to
the boundary containing atoms are (228), and (220),. Therefore 4, = 2, k3 = 2, I3 = 0. One
plane termination in the lower grain contributes 8% and three plane terminations in the upper
grain contribute 8 x (72)~% = 8~ to the total Burgers vector §[114],/3[110],. Since this vector
is a X' = 3 d.s.c. vector, x = 1. The Burgers vectors of intrinsic secondary dislocations do not
always have to be non-primitive d.s.c. vectors. For example, if & = 9 (114),/(114),, 38.94°/[110]
were favoured in some f.c.c. metal it would be preserved by %[114],/7%[114],, which are
primitive 2' = 9 d.s.c. dislocations.

It is instructive to apply the above considerations of intrinsic secondary dislocation Burgers
vectors to the Burgers vectors of lattice dislocations in low-angle tilt boundaries. Consider low-
angle [110] tilt boundaries with mean boundary plane (111) in an f.c.c. crystal. As the mis-
orientation angle tends to zero the boundary plane tends to (111) of the ideal crystal. Following
the above procedure we find that the smallest Burgers vector of lattice dislocations that preserves
the (111) plane of the ideal crystal, without introducing steps or stacking faults, is b = 2[111].
It will be recalled that this is the Burgers vector of primary dislocations associated formally with
each unit of the favoured boundaries in the £ = 1 study. However, it would seem very improbable
that a low angle asymmetrical tilt boundary with (111) mean boundary plane would contain
lattice dislocations with Burgers vector 2[111]. Indeed any very low angle (6 < 1° say) tilt
boundary must consist of well separated lattice dislocations. It is well known that two sets of
edge lattice dislocations are required to produce a low-angle asymmetrical tilt boundary. The
two sets of dislocations do not truly lie in a plane because of local interactions, which tend to
make the dislocations lie along a line inclined at 45° to their Burgers vectors (Hirth & Lothe
1968). The presence of intrinsic g.b.ds with Burgers vector components parallel to the boundary
is contrary to the assumptions made in this paper. We therefore envisage that as the misorienta-
tion of a tilt boundary increases, the constituent lattice dislocations interact eventually to form
units of some ‘high’ angle tilt boundary in the same £-system. Such a transition may be thought
of as the transition from the low- to the high-angle régime and could conceivably occur quite
abruptly (i.e. discontinuously) at a certain misorientation that depends on the &-system.

In §3.3 it was pointed out that relaxation methods using periodic border conditions will
generally produce metastable structures of asymmetrical tilt boundaries that are not singular
interfaces of the corresponding Wulff shape. The use of periodic border conditions imposes an
artificial constraint on the size of the facets. For a symmetrical tilt boundary, with the periodic
cell equal to one period of the boundary, no faceting can take place because all other tilt bound-
aries, within the same coincidence system, have longer periods. However, as shown in §3.3, it is
possible to use this deficiency to deduce the equilibrium shape of an embedded prism grain
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bounded by tilt boundaries parallel to the prism axis. The equilibrium shape is determined by
the Wulff construction, as shown in §3.3. The energies of relaxed tilt boundaries that do not
appear to facet are plotted on a Wulff plot. The relaxed structures of other tilt boundaries, in the
same coincidence system, are checked to ensure that they exhibit some tendency to facet into
those interfaces entered on the Wulff plot. The equilibrium Wulff shape is then derived by the
usual polar Wulff construction, taking into account only the limited number of points in the
Wulff plot. In this way it was found that only symmetrical 2 = 3[110] tilt boundaries, calculated
with the potential for copper, are stable with respect to faceting. Thus, only those boundaries,
and their crystallographic variants, may be favoured. To show that they are indeed favoured
boundaries it is necessary to show that their units are among the fundamental structural elements
of boundaries nearby in the misorientation range within their respective &-systems.

Recently Brokman et al. (1981) concluded that probably all asymmetrical tilt boundaries in
cubic crystals facet into whole units of symmetrical tilt boundaries. The faceting was described
as ‘atomistic’ because it was repeated in each period of the original asymmetrical tilt boundary,
and was thus on an atomistic scale. In § 2 it was shown that such decompositions can certainly
take place, provided, of course, symmetrical tilt boundaries exist with the tilt axis under con-
sideration. The condition for the existence of symmetrical tilt boundaries is that the tilt axis lies
in a {100) or {110) zone. However, there is no a priori reason why it should be energetically
favourable for all asymmetrical tilt boundaries to facet into symmetrical tilt boundaries when it is
geometrically possible. Because equilibrium faceting behaviour is determined by considerations
of energetics only, the Wulff construction can indicate which are the stable facets. Faceting of a
non-equilibrium interface will always tend to occur into stable facets. While the Wulff construc-
tion does not take into account the interaction energy between adjacet facets we know that this
energy is positive. Therefore the stable facets will tend to maximize their sizes subject to kinetic
constraints. In addition, it is reiterated that the simulation of faceting of tilt boundaries will
always produce perfect steps in the interface, because of the requirement of zero stresses far from
the boundary. Faceting involving imperfect steps may be studied atomistically only by imposing
the elastic field of the g.b.ds, associated with the steps, far from the boundary. This is the method
used, for example, in studies of imperfect steps in {112} twin boundaries in b.c.c. metals (Yama-
guchi & Vitek 1976, Bristowe & Crocker 1977) and extrinsic grain boundary dislocations (Sutton
et al. 1979). Since the step vector of an imperfect step is not a c.s.1. vector it does not characterize
a unit of any tilt boundary.

This research has been supported by the National Science Foundation through the MRL
Program, contract no. DMR79-23647.
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APPENDIX

Consider a periodic grain boundary that may be tilt, twist or mixed character. Let the indices
of the boundary plane with respect to the upper and lower grains be (kk{;); and (hykyl5),
respectively. The condition for the boundary to be periodic is

R+RI+ 0 = B+ k3 + 3 (A1)

In general, the indices will not be coprime. If 4;, £, and /; share a common factor m and £, &,
and /, share a common factor 7 then the condition for the boundary to be periodic becomes

m2(H?+ K2+ L2%) = n?(H3+ K2+ 1Y), (A 2)

where Hy, K, and L, are coprime and H,, K, and L, are coprime. Given the odd/even form of the
indices A4,, k; and /; we enquire whether there is any restriction on the odd/even form of the
indices Ay, £, and I, to satisfy equation (A 1). In addition we shall show that both m and z in
equation (A 2) must be odd.

There are three possible combinations of odd and even integers for the coprime triplet
(H, K, L), namely (odd, odd, even), (odd, even, even) and (odd, odd, odd). A cyclic permutation
of any one of these is regarded as the same as that one, e.g. (odd, even, even) is the same as
(even, odd, even). Consider the squares of all integers modulo 8. Any even number squared is
congruent to 0 or 4 mod 8. Any odd number squared is congruent to 1 mod 8. If equation (A 2)
is satisfied it must also be satisfied modulo any integer. The following analysis examines both
sides of equation (A 2) modulo 8 for the three possible forms of (H; K; L;). The various possi-
bilities are summarized in the table below.

m2(HZ+ K2+ L%) mod 8

form of (H K, L,) (H}+Ki+L}) mod 8 n even n odd
(odd, odd, odd) 3 Oor4 3

(odd, even, even) torb Oor4 tor5
(odd, odd, even) 2 or 6 Oor4 2 or 6

We see that if equation (A 2) is satisfied modulo 8 then the form of (H, K; L,) must be the same
as the form of (H,K,L,) and in addition m and » must both be odd. Therefore the forms of
(hyky 1)) and (hykyl,) must also be the same.
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